maRLios Final Report

Josh Mazen
mazen@usc.edu

Carlos Osorio
osoriova@usc.edu

Abstract

Traditional Deep Q-Learning agents often suf-
fer from long training times and large state
spaces. To combat this issue, we introduce
maRLios, an agent that generalizes to different
action sets to play Super Mario Bros. Using
both CNN and vanilla RNN layers, we train
this agent by generating a subset of actions
alongside the current game state to select the
best expected reward. We find that RNN + po-
sitional encoding provides the best reward for
this type of architecture and conclude with rec-
ommendations for future improvements.

1 Introduction

Recent growth in the development of video game
Al is being pushed further by the rising availability
of machine learning methods. However, because
most games require combining sequences of com-
plex patterns to achieve a goal, this task presents
unique challenges. A strong agent should have
domain-specific knowledge of the game’s opera-
tions while still having the capability to adapt to
some unforeseen scenarios. This is ultimately the
goal of our proposed deep learning model, maR-
Lios, shorthand for Missing Action Reinforcement
Learning in Obstacle Systems, a Super Mario Bros.
playing agent.

2 Background

Since their inception, Al and gaming have grown in
synergy, both benefiting from each other’s progress.
Various Al methods, such as minimax and Q-
learning have been used to create artificial agents
capable of playing among human players. In turn,
the expansion and popularity of video games have
driven further development of different learning
algorithms by providing new benchmark environ-
ments. Reinforcement learning is one such ap-
proach that has found its home in video games.

In typical reinforcement learning, agents are
trained using all of the available actions they can
take for a given task and environment. A detri-
ment of this style of training agents, however, is
the inability to effectively scale to different and ac-
tions and environments which were not explicitly

Cameron Witz
witz@usc.edu

Bozhena Pokorny
pokorny @usc.edu

introduced during training time. Indeed general-
ization is one of the core research areas looking to
be expounded upon in the field of Reinforcement
Learning.

Existing methods to create agents capable of gen-
eralization have mainly focused on learning spe-
cific tasks, as in the case of (Hessel et al., 2019)
where multitask models are carefully trained to cre-
ate agents capable of generalizing to multiple envi-
ronments. While this is certainly useful, we believe
that there is still much work to be done in the space
of creating agents capable of generalizing to new
actions, which has been under explored. Creating
a benchmark agent for OpenAI’s gym could open
up the possibility to combine multitask learning
agents with action generalization, enabling devel-
opers and experimenters to reuse reinforcement
learning agents across games without limiting the
mechanics available to the player or agent.

2.1 Generalization in RL

Reinforcement Learning is a unique machine learn-
ing paradigm that requires sequential decision mak-
ing to solve complex tasks. It can require millions
of episodes of repetition to learn the impact of
such a series of decisions, and to make progress
towards achieving the goal. The ability to gener-
alize to new situations is desired for employing
RL in real-life applications, as the possible deci-
sions an agent is able to make may change over
time. Early work explored improving generaliza-
tion in RL by applying techniques commonly used
in Supervised Learning: including regularization
(Farebrother et al., 2018), data augmentation (Lee
et al., 2019), and alternative neural network archi-
tecture (Cobbe et al., 2018). However, such at-
tempts made modest improvements when an agent
was presented with an unseen task and still strug-
gled with overfitting when presented with small
or medium training sets. Agarwal et al. have hy-
pothesized that these techniques were insufficient
because they ignored the sequential nature of the
agent’s decision-making space, or otherwise failed
to capture the semantics of an agent’s interactions
in a high-dimensional representation (Jain et al.,

2020)(Agarwal et al., 2021).

Recent progress has been made by attempting
to embed greater contextual information into the
environment-, state-, or action-space. A project
by Agarwal et al. attempts to learn similarity be-
tween states, despite varied environments, based
on shared sequences of actions. They achieve this
by applying contrastive learning to learn embed-
dings of behaviorally similar states based on a state-
similarity metric. Act2Vec (Tennenholtz and Man-
nor, 2019) borrows the notion of context in lan-
guage from NLP to learn embeddings for actions
representative of their likelihood to occur in a given
environment (context). They successfully generate
embeddings that capture similarity between actions,
which can improve generalization by injecting prior
knowledge into the problem-space before solving
an RL task.

An approach taken by Chandak et al. extends
this idea to a set of actions: they propose learn-
ing a representation of action-embeddings to create
a space in which an agent can learn an internal
policy. Their key innovation was that the policy
can learn during RL training to improve upon the
provided action representation. This increased the
trained agent’s ability to generalize when presented
with unknown actions in training subsets. Further
work by (Jain et al., 2020) and (Chandak et al.,
2020) combined the above approaches into two
steps to train an RL agent optimized for generaliza-
tion across action sets. Both first acquire descrip-
tive action representations, then they apply RL with
a policy flexible to varying action sets.

2.2 Deep Q-learning

Double Deep Q-learning (DDQL) is a popular RL
algorithm used to train game agents. It is an off-
policy value-based model that uses two deep neu-
ral networks to estimate each state-action pair’s
expected cumulative reward, or Q-value. One net-
work, known as the online network, is used to select
the best action while the other, the target network,
evaluates the selected action. Decoupling selection
and evaluation this way helps reduce overestima-
tion of Q-values and stabilizes the learning process.

While DDQN has shown success in projects in
the video game space, it still suffers from chal-
lenges common to RL - including the extensive
training time required to create competent game-
playing agents and difficulties with generalization.

Transfer of knowledge between agents in dif-

ferent environments typically requires re-training
agents for distinct tasks, making integration of
this technology across multiple games impractical.
One approach that addresses the challenge of agent
generalization across similar, but distinct, action-
spaces uses action embeddings to train agents to
associate action representations with an optimal
policy (Jain et al., 2020). This was shown to en-
hance an agent’s ability to use unseen actions to
achieve its objectives.

3 Problem Statement

In this project, we seek to create a benchmark for
off-policy learning with action generalization in a
complex gaming environment. Super Mario Bros.
is a game that requires complex sequential problem-
solving, suitable for this task. The agent is trained
using a modified DDQL procedure, in which the
agent will be trained to estimate an optimal Q-value
for its set of available actions to achieve its goal:
overcome obstacles, avoid enemies and death, and
proceed towards the finish line as efficiently as
possible.

The novelty introduced by this benchmark
comes in both the complexity of the environment
to which the agent must adapt, which sequentially
introduces new challenges as the agent proceeds, as
well as in the application of the DDQN algorithm
to achieve this goal.

4 Approach

We approach generalization to new actions by fol-
lowing procedures similar to those outlined by Jain
et al.. This required two steps to establish an RL-
training procedure that would enable generalization
to unseen actions. First, create an action repre-
sentation that would allow our model to identify
similarities across different actions. Second, adopt
a flexible model architecture that could take any
subset of the actions as batched input during train-
ing time, or subset of unseen actions during testing
time.

While the approach taken by (Jain et al., 2020)
used a policy-based training objective, we train a
deep neural network to estimate Q-values. We be-
gan with a framework for DDQN and initial model
architecture based on a blog post by Grebenisan
(2020). We similarly used used a series of convolu-
tional layers to process the image data representing
the environment at each time step and output esti-
mated Q-value distribution for the available actions.

However, since our model is not presented with
the full action-set, we had to adjust the output to
give a batched matrix of Q-values for the subset
of actions available at each time step. Addition-
ally, we adjust the model architecture to consider
the choice of available actions given the context of
its environment by feeding both a learned vector-
representation for the environment (the output of
the CNN), and a vector representing the available
action-set into the final Neural Network to learn
the Q-values.

5 Implementation Details

5.1 Environment Details

We are using Open AI’s gym environment, specifi-
cally gym-super-mario-bros environment (Kauten,
2018). This environment has been widely used to
train RL agents, which allows our team to focus on
the model and training as opposed to configuring
the environment. Mario is divided into worlds and
stages, and the agent we are training sees input
from the complete game level in World 1, Stage 1.

5.2 Rewards and Actions

Rewards and actions are a crucial part of defining
any RL agent. The rewards used to train maRLios
are defined below, per (Kauten, 2018):

r=0x—0dc—d (D

Here, dz and Jc represent the changes in x-
position and game clock between time steps, re-
spectively, whereas d = 15 if the agent dies and
0 otherwise. This reward function incentives our
agent to complete the level (by moving to the right,
maximizing §z) without wasting time (minimizing
oc).

Additionally, the action space of the gym envi-
ronment mirrors the original Nintendo Entertain-
ment System (NES) action space of 256 unique but-
ton press combinations. Popular subsets of these
actions exist in the gym environment as “wrappers”,
labelled as Right Only and Simple Movement, and
Complex Movement (Kauten, 2018), which drasti-
cally reduce the action space to 5, 7, and 12 unique
actions, respectively.

5.3 Baseline Model

The baseline model we compare maRLios against
uses a double deep-Q learning scheme. The model
takes a frame of pixels as its state and processes
them using three convolutional layers, as seen in

Figure 1a. This is then fed through several linear
layers and outputs a single index to the action that
is expected to maximize reward.

5.4 Action Encodings

We define an action as a combination of simultane-
ous button presses during a 4-frame duration. As
there are only 8 buttons available as input in our
environment, we can use a multi-hot vector of size
8 to encode each possible combination of button
presses comprising 256 total actions.

Initially our team sought to use a simple rep-
resentation of an action as a simple multi-hot en-
coded vector of size 5 for the 5 possible valid but-
ton presses that are available on the NES CA’, ’B’,
’down’, ’left’ and ’right’). The agent may also
choose to do nothing, which is represented by a
vector of all 0’s CNOOP’). For the purposes of
training a generalizable agent however, the result-
ing set of possible actions we determined to be too
small, so instead of taking one action at a time, our
agent takes two. The result is an action encoding
of size 10 where each group of 5 values represents
the buttons being pressed during a single action.

During run time, our agent selects two actions
from it’s action set, and we play each of the two
actions it chose over a 2 frame period.

5.5 Positional Bias

We chose to experiment with including a positional
bias to our two action vector representations, by
multiplying the second 5 values for the second ac-
tion by 2. Our hope is that the model will learn that
the larger values are actions which play after the
smaller values.

5.6 Sufficient Action Sets

During training and testing, in order to ensure that
our model always had enough actions to complete
or at the very least progress in the game, we defined
what we refer to as sufficient action sets. These suf-
ficient action sets were split into ’jump’ sets, and
right’ sets, where the sets include only action repre-
sentations that include ’jump’ and ’right’ in both of
the two actions represented by our encoding. One
note about our sufficient right sets is that we made
sure not to include ’left’ in any of the available
actions for those sets.

For this, we split our entire action space into
training, validation, and a final testing holdout set.
Additionally we created sufficient sets for each of
these splits, and ensured mutual exclusivity.

Environment

Conv Layers
RRE B
K[Argmax
S
NN

(a) Baseline DQN

Environment

1> Conv -» FC/RNN

(b) DQN with Action Generalization

Figure 1: (a) Baseline agent trained using Deep Q-learning. The model estimates the Q-value of each action from
the current game state using convolutional and linear layers. (b) Agent with action generalization. The model
uses separate action representations concatenated to the encoded state to estimate each action’s Q-value. FC/RNN
denotes that some agents were trained with an fully connected layer here, and others substituted this with an RNN

layer

5.7 Model Architecture

To achieve generalization to unseen actions, we
consider the method of accepting and evaluating
actions in our model’s design. We experimented
with several different architectures over the dura-
tion of this project, however the common thread
amongst them all was the concatenation of action
representations to our latent state representation.
Our final architecture consists of 3 convolutional
layers to process the current game state into a latent
representation as shown in Figure 1b. This latent
representation will then be passed through a single
layer RNN. The output of the RNN is then repeated
n times for each of the n actions we plan to evalu-
ate. Our action encodings are passed through two
small fully connected layers to create a latent ac-
tion represenation. We then concatenate each latent
action representation to our latent state encoding,
before finally feeding this batch of action-state vec-
tors through several linear layers. The final output
is a n dimensional tensor representing the Q value
estimate for each action, from which our model
will select the action corresponding to the highest
value.

We experimented with other architectures along
the way, the most notable differences being that
these early models did not contain any RNN layers,
as well as in some cases we did not use a latent ac-
tion representation, but rather simply concatenated
the raw 10 dimensional action encoding to our state
representation directly. We abandoned these earlier
architectures in favor of the RNN based approach
which was achieving better results and better gen-
eralization.

5.8 Training procedure

To train our model, we used a combination of
epsilon-greedy action selection and random ac-
tion space sampling. At the start of each training
episode, our agent samples random actions from
our training set. In addition to this, we always sam-
ple 3 more actions. One from the sufficient jump
training set, another from the sufficient right train-
ing set, and lastly, we include "NOOP’. The agent
progresses through the entire level until it reaches a
terminal state, at which point we save the relevant
statistical information, and re-sample its available
actions in the aforementioned manner.

Every 10 episodes, we also evaluate our agent
on the validation set and compare it’s progress to
see if it is learning to generalize to unseen actions.
The agent is never trained on the data from this val-
idation set however. During this process, the agent
is not exposed to our test set, which we reserve for
our final comparison.

5.9 Experiments

Our experimentation followed three phases to es-
tablish our problem formulation and validate a base-
line model, then to optimize our training procedure
for generalization.

5.9.1 Establish valid action representation

We first needed to build an action representation
that could be compatible with the gym environment
as well as represent a complex action-space. For
comparison, we trained a benchmark DDQN RL-
agent on action-sets native to the gym environment
to serve as our baseline. The baseline model did
not consider the action as input, but estimates a
distribution of Q-values over the static action space
(Fig. 1b). The Baseline DQN model, trained on
the static 7-action set simple movement served as

Name Avg. Total Rewards | Pipe 2% | Pipe 3% | Pipe 4% ‘ Completion %
Baseline 3080 100 100 100 100
maRLios 223.6 +£214.7 19 7 1 0

maRLios + RNN 716.9 £ 197.5 97 80 6 0

Figure 2: Summary of each model run using test set for 100 episodes. Generalized models are tested on an unseen
holdout set, while the baseline model was tested on the same simple actions used for training. Pipe X columns
denote percentage of time an agent made it past pipe X (we start with pipe 2 as pipe 1 is too easy to use as a

benchmark).

an example of successful training. We tested differ-
ent formulations of our action encoding to ensure
they had a comparable abstraction in the gym envi-
ronment.

5.9.2 Demonstrate feasibility

Here, we established a process for sub-sampling the
actions such that the agent must learn their utility
based on their embedding. To determine an ap-
propriate sub-sampling process, we experimented
with: sub-sampling different sizes of randomly-
chosen action subsets, sub-sampling a new set ev-
ery action, sub-sampling every episode, and in-
cluding sufficient action sets (Section 5.6). In
this phase we build maRLios — our first action-
generalizable model out of a CNN and a series of
feed-forward networks to generate latent action-
embedding space and output estimated Q-values.

5.9.3 Train for action generalization

Finally, we established a training procedure to op-
timize for generalization and avoid over-fitting to
the training set. We split our actions into approxi-
mately 70:15:15 (training:validation:testing) each
had independent sufficient action as described in
Section 5.8 sets for sampling. Hyper-parameter
tuning of learning rate, exploration rate, and neural
network size was chosen by tracking the perfor-
mance on this unseen validation set. In this phase,
we introduced alternative architectures that include
RNN components, to help train for the sequential
nature of the game’s tasks. To further account for
sequentiality, we experimented with including posi-
tional bias sampling for our vector representations,
as described in the above section 5.5. Our final,
best-performing action-generalizing model from
this phase we refer to as maRLios + RNN.

5.10 Evaluation Metrics

We compare the baseline, maRLios, and maRLios +
RNN with a number of useful metrics. The total re-
ward for each run, calculated in Section 5.2, is our

primary success metric as it allows us to approxi-
mate the horizontal position of the agent alongside
the time remaining. X-position and time elapsed
for each particular run are also tracked separately
in the training process to determine if the rewards
are more heavily weighted by one metric versus the
other. Tracking each separately also allows us to
understand how far the model reaches in the level
before either dying or running out of time.

To track the progress of each model over time,
we compute both average total reward and standard
deviation of reward. Within the training loop, we
compute each metric after each episode to achieve
fine-grained precision for the total training process.
Every 10 episodes within the training process, we
track these statistics using the validation set. For
our test set, we run each model for 100 episodes
using a different set of actions with potential for
overlap for simple models and completely new ac-
tions for general models. These test sets are eval-
uated using all of the above metrics. Additionally,
we track a number of benchmarks within the level
to measure potential obstacles that the model has
overcome. These benchmarks include moving past
3 tall pipes in the beginning of the level as well as
if the model completed the level for a given run.

6 Results

The results of the models yielded mixed results,
especially compared to the baseline. Though the
baseline had been trained for a significantly longer
period of time, when removing all randomness and
given the Simple Movements action set, it was able
to complete the entire level with 100% success
rate and an average reward of 3080. While the
generalized maRLios models did not complete the
level at all during the testing phase, we believe that,
given further modifications to the architecture, the
model would compare favorably with the baseline.

The generalizing MaRLios without an RNN had
conflicting results. While during the first stages

Average Training Rewards per episode over 5000 episodes
Average and Standard Deviation

3500 1
Baseline DON - simple movement

MaRLios - simple movement
—— MakRLios + RNN - simple movement
—— MaRLios - generalizable
2500 4 —— MaRLios + RNN - generalizable

3000 +

2000 4

Reward

1500 -

1000 A

o Rt R

0

Average Validation Rewards per episode over 5000 episodes
Average and Standard Deviation

MaRLios simple movement
MaRLios generalizable

1000 4 —— Marlios + RNN generalizable

Reward

—500

(a) Average and standard deviations of training rewards for (b) Average and standard deviations of validation rewards for
baseline and maRLios variations, with predicted future perfor- baseline and maRLios variations. The MaRLios + RNN - gen-

mance of MaRLios + RNN - generalizable projected.

of training it seemed to be learning and its vali-
dation rewards had a positive slope (Fig. 3b), the
model soon began overfitting to the training data,
and the average validation rewards started decreas-
ing. This decay in performance was evident during
the testing phase, where after 100 episodes it ob-
tained and average total reward of 223.6 + 214.7
(Fig. 2). This indicates it frequently died to the first
enemy and often failed to pass the beginning of the
stage. This is likely due to some imbalance in the
architecture, where the action set or the convolu-
tional net overly influenced the decision making
of the agent. The RNN model, however, yielded
far more encouraging results. With an average re-
ward of 716.9 4 197.5, the model almost always
passed the second pipe and usually the third. Given
the fact that this model is tested on a set of data it
had never seen and is trained for significantly less
time than the baseline, we can surmise that there is
improvement easily available.

The positional bias made a significant improve-
ment to the model. In two comparable models after
2,000 episodes of training, the average validation
reward is 516 when including positional bias and
344 without positional bias.

7 Discussion

We succeeded in establishing a new benchmark
agent in this environment for testing action-
generalization, and showed plausibility for our goal
of achieving performance on unseen actions com-
parable with the baseline.

However, this project did face some challenges
in its scope. Due to the experimental nature of
generalization in reinforcement learning, and the

eralizable validation data is over 2000 episodes.

challenge of training an RL agent to complete a
full level of game-play, we set some simpler check-
points to evaluate success. These checkpoints eval-
uate the agent’s ability to progress beyond tall
pipes, which we observed to be major obstacles
to overcome, even in the baseline model. Addition-
ally, our final best-performing model architecture
and hyperparameters were determined to be Mar-
lios + RNN. Although we planned to train under
optimal conditions for a full 5000 episodes to com-
pare longer-term training performance, we experi-
enced time and resource constraints as the model
took over 48 hours to train 2000 episodes.

An additional design decision aimed at enhanc-
ing the agent’s generalization and validation results
involved subsampling the available actions at the
onset of each run, as opposed to each step. Al-
though the latter method yielded superior average
rewards for the training set, the validation agent’s
performance was suboptimal, and generalization
was insufficient. Furthermore, we discovered that,
when operating these trained agents on the train-
ing set without subsampling at each step, the agent
would frequently become trapped behind an obsta-
cle. The agent persistently executed the same ac-
tion, typically involving consecutive jump presses,
which failed to register as a second jump.

This behavior manifested due to the agent’s ac-
climation to the continual alteration of available
actions at each time step. As a result, the agent
converged to select the "statistically best action"
from the current subsample, with minimal regard
for the state itself. Conversely, when the agent sub-
sampled its actions at the inception of each episode,
it demonstrated improved learning of action uti-

Cumulative Action Distribution

30k
20k
10k

Count

o
—
-

—
'

v
a9
a
W
Ll
LA

v

v
-

V-

W wBl'a’y »

WBL'g | B UMEP'E’Y &

wbu'g

WeN'g'y | umop’g
umop’g | Ys|‘umop’

- l o

EEFPEPrRrrOERORERREE »E
g 2alawlFa—23nan~a=
Zo 26200220 pzZ@000m0_
—_E T = 4 EELE 5
] —-353F52—— — 753533252
: 25 P-A33g>r- P 555D
P £Z7585z82 ETSSrpEire
3 gz SwrA352 ~ =3 5803
Ey £ = & a——%3 -2 g5
- Sz S EF m »Z b
S @ P~ a < S
a = 3~ - «® -

=

ybu‘umop’g | b
bL'uMop’'g | yBLI'g

WBL'Y | WBI'UMep’'g'Y

1yb‘umop’y | umop’g

wb'gy
umop'g'y | bl 'umop’g

Wa|‘umop’y | Jybu'umop’g

Episode

- N | T
SEPFFPPPFPOGPPEEPREEPP PR >ErEprPEE>>
SFL.pporprpapgFooiFopPlloamam——onam—a
5—-Seg—eegP-22573822558e5 22225222
2258 ,85s g5t i73z5s8s 805540 ¢
pfTEF8235,025-525,5 033885537523
ARB a3 533 - PRF - RBRPEFT LSS REE 2723
S om 3 Ly
—RP8-e555>2espRpRpPres PS5 rpar 08
> 2meiBELo3 L LAl L rmaZa®oLianiaraa
< :kﬁmnnk S 5 o a =] > = < o

w I F——2 33> Swwez—F ER —an -
2 [gLoL: EL:ng35» 7835»28 »
£ 2% »»%5%25 5258 22 37§52z 2
5% Foee~2% 22 $£32m» & FL 233 o
< L, 5% @37 532%2wm 2 as 2
g & 27 377 s8Fgy E4 3

+ E4 |3 g% 5o

- E Ed =

= E

E

Ed

lization within its state, thereby achieving better
generalization.

7.1

We faced some challenges common to the field
of Reinforcement Learning, including the massive
amount of time required to train an intelligent agent,
the problem of sample efficiency, and balancing ex-
ploration versus exploitation to find convergence
to a suitable Q-value without over-fitting action
selection (Shao et al., 2019) (Cao, 2020). Consider-
ing the time-frame restrictions of a semester-long
project, we were able to undergo significant iter-
ations of training, but increasing the number of
episodes may be necessary to further improve per-
formance.

Major Challenges

We were able overcome the limited num-
ber of action (5 buttons) to define a tractable
problem-statement by including the sufficient
action-sampling and incorporating some redun-
dancy in the dataset via the two-action combination.
This way, we ensured the new test actions were
within the distribution of the trained actions.

7.1.1 Action-space Representation

A primary challenge encountered in the training
of maRLios pertained to defining the action-space
representation and establishing suitable training,
testing, and validation sets. This proved to be a
fundamental aspect in achieving generalization in
our model. We had to carefully consider the bal-
ance between the size and variability of the action
set and the complexity of the task assigned to the
Mario agent.

To facilitate the learning of action representa-
tions and their effective utilization in conjunction
with the provided environment state, a sufficiently

Distribution of most used actions by the maRLios-RNN model during the training period.

large training action set was required. The Mario
Bros. game encompasses merely five types of but-
ton presses, necessitating the definition of actions
as distinct combinations of button presses at a time.
This resulted in an action space comprising 32 ac-
tions (including no button press). Nevertheless,
certain button combinations (e.g., left and right)
were contradictory, canceling each other out and re-
ducing the original action set to a mere 24 actions.

To address this limitation, we opted to define
each action as two consecutive "single" actions, as
delineated in Section 5.6, thus augmenting our to-
tal action set size to 576. Although this approach
expanded the action space, it simultaneously in-
creased the complexity of the task the agent needed
to learn. Consequently, the agent was now tasked
with determining the subsequent two actions based
on its current state, rather than a single action.

7.1.2 Sufficient Action Sets

Another critical facet of the action space involved
ensuring that the maRLios agent had access to a suf-
ficient set of actions during each run to accomplish
its objectives. Accordingly, we established distinct
sufficient action sets for training, validation, and
testing, as described in Section 5.6.

During each run, we ensured that a minimum
of one action from each of the sufficient action
categories was available to the agent when subsam-
pling the action sets. This approach, however, intro-
duced a tradeoff: the sufficient action set exhibited
a considerably higher probability of being sampled
during each training run. Moreover, as these sets
were more likely to prove useful in a diverse range
of states, they were increasingly susceptible to re-
peated selection by the agent, resulting in a higher
chance for overfitting and the inadequate learning

of actual action representations.

As evidenced by Fig. 4, the preponderance of
actions selected by the agent at convergence be-
longed to these sufficient sets. We postulate that,
while the majority of trained agents experienced
a consistent and steep increase in average total re-
wards in validation for the initial 500 episodes, this
pattern was followed by an evident degeneration of
the agent on validation, as it adapted to identify a
limited number of "good" actions.

7.2 Future Work

In the future, we propose including additional reg-
ularization techniques to encourage diversification
of action selection and fight over-fitting. One ap-
proach is to include entropy maximization regu-
larization, which has been shown to improve per-
formance and stability in off-policy RL algorithms
(Haarnoja et al., 2018). Further improvements to
data efficiency and stability could be investigated
by including Kullback-Leibler Divergence Regu-
larization (Li et al., 2022).

Building upon the maRLios approach, future re-
search could also investigate the use of a richer
action representation space to train the agent. Sev-
eral avenues for exploration include:

1. Extending the action definition to consist of
3 or 4 consecutive single actions: While this
approach could increase the complexity of
the task, it would also substantially expand
the size of the training set and its respective
sufficient sets. This, in turn, could help miti-
gate overfitting and improve the agent’s per-
formance.

2. Investigating more sophisticated auto-
encoders for action representation: During
our experiments, we observed that introduc-
ing a latent action space before incorporating
it into the state representation led to increased
validation rewards. We believe that this latent
representation encoded useful information
and relationships between button presses
and consecutive actions, contributing to
better generalization in the downstream task.
Consequently, employing more advanced
auto-encoders, such as Variational Autoen-
coders (VAEs) (Jain et al., 2020), could result
in a more representative latent action space
with additional encoded relationships.

By exploring these potential improvements, fu-
ture work can seek to enhance the action represen-
tation space for maRLios, leading to better general-
ization and performance in reinforcement learning
tasks.

8 Conclusion

In conclusion, the approach presented within this
paper demonstrated promising results in policy
learning reinforcement learning agents in video
game play, by introducing action generalization in
a complex and dynamic environment such as Mario
Bros. Through our experiments, we observed that
latent action representations could effectively cap-
ture relevant information about the agent’s interac-
tions with the environment, and that, in conjunction
with state representations, led to increased valida-
tion rewards, indicating better generalization in the
downstream task.

However, the results also revealed that overfit-
ting can occur as the agent adapts to identify a
limited number of "good" actions in the sets pro-
vided. To address this issue, future work should ex-
plore incorporating additional regularization tech-
niques such as entropy maximization regularization
and Kullback-Leibler Divergence Regularization.
Furthermore, expanding the action representation
space by extending action definitions or employing
more sophisticated autoencoders, such as Varia-
tional Autoencoders (VAEs), could lead to even
better performance and generalization.

By building upon the maRLios approach and
addressing its limitations, future research can con-
tribute to the development generalization in RL
for gaming leading to more effective and efficient
reinforcement learning agents that are capable of
solving complex tasks and adapting to diverse en-
vironments.

References

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel
Castro, and Marc G. Bellemare. 2021. Contrastive
behavioral similarity embeddings for generalization
in reinforcement learning. In International Confer-
ence on Learning Representations.

Tianyue Cao. 2020. Study of sample efficiency im-
provements for reinforcement learning algorithms.
In 2020 IEEE Integrated STEM Education Confer-
ence (ISEC), pages 1-1.

Yash Chandak, Georgios Theocharous, James Kostas,

https://doi.org/10.1109/ISEC49744.2020.9397834
https://doi.org/10.1109/ISEC49744.2020.9397834

Scott Jordan, and Philip S. Thomas. 2019. Learning
action representations for reinforcement learning.

Yash Chandak, Georgios Theocharous, Chris Nota, and
Philip Thomas. 2020. Lifelong learning with a chang-
ing action set. Proceedings of the AAAI Conference
on Artificial Intelligence, 34:3373-3380.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim,
and John Schulman. 2018. Quantifying generaliza-
tion in reinforcement learning.

Jesse Farebrother, Marlos C. Machado, and Michael
Bowling. 2018. Generalization and regularization in
dqgn.

Andrew Grebenisan. 2020. Blog. [link].

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor. CoRR, abs/1801.01290.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech
Czarnecki, Simon Schmitt, and Hado van Hasselt.
2019. Multi-task deep reinforcement learning with
popart. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 33(01):3796-3803.

Ayush Jain, Andrew Szot, and Joseph Lim. 2020. Gen-
eralization to new actions in reinforcement learning.
In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 4661-4672.
PMLR.

Christian Kauten. 2018. Super Mario Bros for OpenAl
Gym. GitHub.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee.
2019. A simple randomization technique for gen-
eralization in deep reinforcement learning. CoRR,
abs/1910.05396.

Renxing Li, Zhiwei Shang, Chunhua Zheng, Huiyun Li,
Qing Liang, and Yunduan Cui. 2022. Efficient Dis-
tributional Reinforcement Learning with Kullback-
Leibler Divergence Regularization.

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li,
and Dongbin Zhao. 2019. A survey of deep reinforce-
ment learning in video games.

Guy Tennenholtz and Shie Mannor. 2019. The natural
language of actions. CoRR, abs/1902.01119.

Code Repository
https://github.com/joshmazen14/maRLios

https://doi.org/10.48550/ARXIV.1902.00183
https://doi.org/10.48550/ARXIV.1902.00183
https://doi.org/10.1609/aaai.v34i04.5739
https://doi.org/10.1609/aaai.v34i04.5739
https://doi.org/10.48550/ARXIV.1812.02341
https://doi.org/10.48550/ARXIV.1812.02341
https://doi.org/10.48550/ARXIV.1810.00123
https://doi.org/10.48550/ARXIV.1810.00123
https://blog.paperspace.com/building-double-deep-q-network-super-mario-bros/
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://ojs.aaai.org/index.php/AAAI/article/view/4266
https://ojs.aaai.org/index.php/AAAI/article/view/4266
https://proceedings.mlr.press/v119/jain20b.html
https://proceedings.mlr.press/v119/jain20b.html
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros
http://arxiv.org/abs/1910.05396
http://arxiv.org/abs/1910.05396
https://doi.org/10.36227/techrxiv.19679454.v1
https://doi.org/10.36227/techrxiv.19679454.v1
https://doi.org/10.36227/techrxiv.19679454.v1
https://doi.org/10.48550/ARXIV.1912.10944
https://doi.org/10.48550/ARXIV.1912.10944
http://arxiv.org/abs/1902.01119
http://arxiv.org/abs/1902.01119

Team Contributions
¢ Cameron Witz

— Final Report

New Sections 5.4 to 5.8 (included)
Editing

RNN model architecture

RNN model training

Action sampling

Statistics gathering set up

Hyper Parameter Tuning

L R S

— Midterm Report
Description of Solution
* Environment Details
* Set-up and training right only agent
— Survey Report
Introduction
* Existing work
* Limitations
— Project Proposal
* Project Impact
* Feasability and Data Sources
* Approach

¢ Carlos Osorio

— Final Report
+ Baseline
* MaRLios Simple Movement Archi-
tecture & Training
* MaRLios Generalizable Architecture
& Training
* Hyper Parameter Tuning
* Validation Statistics
% Discussion, Conclusion, Plots, Dia-
grams
— Midterm Report
* Modify environment to run on
CARC with command line argu-
ments
* Set-up GCP training environment
* Problem Statement, Architecture Di-
agrams
— Survey Report
* Introduction
% Conclusion
+ Editing
— Project Proposal
* Project Objectives and Overview

+ Editing
* Bozhie Pokorny

— Final Report
* MaRLios model training variations
on CARC
* Rewards Training/Validation Plots
* General Editing, Experiments, Dis-
cussion, Future Work

— Midterm Report
* Deployment of Baseline models on
CARC
* Results and Discussion and General
Editing
— Survey Report
+ Existing work
* Editing
— Project Proposal

x Costs
* Risks
* Editing/Style

¢ Josh Mazen

— Final Report

+ Baseline Model

+ Hyper Parameter Tuning

Collecting Test Data

* Action Sampling

+ Results, Discussion, Final Editing
— Midterm Report

* Introduction

+ Evaluation and Metrics

* Setup of Gym Environment
— Survey Report

+ Existing Work

+ Editing
— Project Proposal

+ Expected Timeline

* Divison of Labor

+ Editing

